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DRUMHELLER, A., H. HENNI, G. LAFOND, J. R. BRUNETTE AND F. B. JOLICOEUR. Differentialeffectsof 
low versus high doses of apomorphine on retinal dopamine metabolism in light- and dark-adapted rabbits. PHARMACOL 
BIOCHEM BEHAV 50(l) 83-90, 1995. -Previous electrophysiologic results from this laboratory indicate that apomorphine 
exerts a differential dose-related effect on rabbit electroretinograms, with low doses increasing the b-wave and higher doses 
decreasing this parameter. Results were interpreted as reflecting apomorphine’s agonistic properties at two different receptors: 
1.0 mg/kg acting at the postsynaptic site, and the lower dose, 0.01 mg/kg, preferentially stimulating inhibitory autoreceptors. 
The purpose of this experiment was to investigate further this hypothesis by determining retinal levels of dopamine, dihydroxy- 
phenylacetic acid, and homovanillic acid in retinas of light- or dark-adapted rabbits treated with saline, 1.0, 0.1, or 0.01 mg/ 
kg apomorphine intravenously. Results indicate that in dark-adapted rabbits only the highest dose tested, 1.0 mg/kg, de- 
creased dopamine concentrations. In animals exposed to light, the lowest dose tested, 0.01 mg/kg, significantly reduced 
dopamine and metabolite levels, whereas the highest dose unexpectedly increased retinal dopamine turnover. Results are 
discussed in terms of receptor sites and the influence of lighting conditions 

Retina Dopamine Autoreceptors Apomorphine Dopamine metabolism 

EVIDENCE from a variety of electrophysiologic, pharmaco- 
logic, and biochemical studies strongly suggests that dopamine 
functions as an important inhibitory transmitter in the mam- 
malian retina (11,12,29,49,50,58). In many species, including 
rat and rabbit, dopamine appears to be localized within a 
subset of amacrine cells (12,16,24), where its synthesis and 
turnover rate are regulated by light exposure (3,13,26,44,51). 
Binding experiments coupled with studies on agonist and an- 
tagonist effects on dopamine turnover and cyclic AMP accu- 
mulation suggest the existence of two types of dopamine re- 
ceptors classified as D, and D2, depending on their interaction 
with adenylate cyclase within the central nervous system 
(15,33,34,48). Both types of receptors have been identified in 
retinas of various mammalian and nonmammalian species 

(55). The existence of D, receptors, which are positively cou- 
pled to adenylate cyclase in retina of several species including 
rat and rabbit, has been convincingly demonstrated (4,5, 
17,40,52,54). However, results of experiments designed to 
identify D, retinal receptors negatively linked to adenylate cy- 
clase point to marked species differences. Although such re- 
ceptors have been uncovered in several species including rat 
(23,52), frog (27), and hen (41), their presence has not been 
confirmed in rabbit (42,43,53). Nonetheless, pharmacologic 
experiments performed in rabbits have provided cogent data 
suggesting that dopamine-containing amacrine cells possess 
presynaptic autoreceptors of the D, type mediating a negative 
feedback inhibition that modulate the synthesis and/or release 
of dopamine (14,15,45). 

’ Requests for reprints should be addressed to Francois B. Jolicoeur, Department of Psychiatry, Faculte de Medecine, Universite de Sher- 
brooke, 3001 12 Ave. Nord, Sherbrooke, Quebec JlH 5N4, Canada. 
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Results from various behavioral, biochemical, electrophys- 
iologic, and neurochemical studies suggest that relatively low 
doses of apomorphine (a mixed D/D, receptor agonist) pref- 
erentially stimulate presynaptic autoreceptors, whereas higher 
doses stimulate postsynaptic sites (2,22,57). In a previous ex- 
periment (47), we examined the electrophysiologic conse- 
quences of pre- vs. postsynaptic receptor stimulation by in- 
vestigating the effects of selective doses (0.01, 0.1, and 1.0 
mg/kg) of apomorphine on the dark-adapted rabbit electrore- 
tinogram (ERG). Results indicated that the intermediate dose, 
0.1 mg/kg, had no significant effect on either the latency or 
amplitudes of the a- and b-waves. The smallest dose of the 
drug significantly increased b-wave amplitudes, a result con- 
sistent with decreased dopaminergic transmission (46). Con- 
versely, the largest dose of the dopamine agonist significantly 
reduced the b-wave amplitudes, implicating enhanced dopa- 
minergic activity. These opposite effects suggest that in the 
retina, a relatively higher dose of apomorphine mimics the 
effects of dopamine at postsynaptic receptors, whereas the 
lower dose inhibits the action of the transmitter, possibly via 
interaction with presynaptic inhibitory autoreceptors. The 
present experiment was undertaken to better elucidate the 
mechanisms underlying these electrophysiologic changes by 
examining the effects of the same doses of apomorphine ad- 
ministered intravenously (IV) on levels of dopamine (DA) and 
its main metabolites, dihydroxyphenylacetic acid (DOPAC) 
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and homovanillic acid (HVA), in rabbit retinas. As dopamine 
metabolism is modulated by lighting conditions, we investi- 
gated the neurochemical effects of the drug in both light- and 
dark-adapted animals. 

METHOD 

Animals 

Forty-eight adult, pigmented rabbits weighing approxi- 
mately 2.5 kg were maintained on a 12-h light-dark cycle for 
at least 1 week before experimentation. Animals were removed 
from their home cages 3-4 h after the onset of the light cycle 
and were divided into two equal groups. One group was 
adapted to the light (approximately 500 1 x ) for 60 min before 
injection, and the other was dark-adapted for the same period. 
Fifteen minutes before the end of the adaptation period, ani- 
mals were lightly anesthetized with pentobarbital sodium. For 
each lighting condition, different groups of animals (n = 6) 
received IV injections of either 0.9% NaCl (control group), 
0.01, 0.1, or 1.0 mg/kg apomorphine in a volume of 1 ml. 
Thirty minutes after drug administration, animals were sacri- 
ficed and both eyes were enucleated and placed on ice. The 
cornea, iris, lens, and vitreous were removed, and the retina 
gently peeled off and stored at -80°C. For dark-adapted 
animals all manipulations were performed with the aid of a 
dim red light. 
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FIG. 1. Dose effects of 0.01, 0.1, and 1 .O mg/kg apomorphine vs. saline-treated controls on retinal 
dopamine concentrations measured in both light- (left panel) and dark- (right panel) adapted rabbits. 
Results are expressed as mean + SD in nanograms per milligram wet weight. Significant differences 
from respective saline-treated controls are indicated by asterisks. *p < 0.05. **p < 0.01. “Significant 
differences between control groups (saline-light vs. saline-dark). 
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FI,G. 2. Dose effects of 0.01, 0.1, and 1.0 mg/kg apomorphine vs. saline-treated controls on retinal 
DOPAC concentrations measured in both light- (left panel) and dark- (right panel) adapted rabbits. 
Results are expressed as mean f SD in nanograms per milligrams wet weight. Significant differences 
from respective saline treated controls are indicated by asterisks. *p < 0.05. **p < 0.01. 

Biochemical Determinations 

Retinas from each rabbit were combined and homogenized 
in 400 ~1 HClO,. After centrifugation the supernatant was 
aspirated and analyzed immediately by HPLC (Beckman In- 
struments, San Ramon, CA) for the contents of DA, DOPAC, 
and HVA. Dopamine and its metabolites were separated iso- 
cratically on a 4 mm x 10 cm, 3 p reverse-phase column pro- 
tected by a short precolumn. The column eluate was moni- 
tored by an LC 2A electrochemical detector (BAS, West 
Lafayette, IN) equipped with a glassy carbon electrode and 
operated at an applied potential of 0.65 V. The eluting solvent 
was a mixture of 0.1 M sodium acetate, 0.02 M citric acid, and 
methanol (92/8 v/v), pH 4.0, containing 0.3 mM EDTA and 
0.05 mM sodium octylsulfate. Analyses were performed at 
room temperature at a flow rate of 1.5 ml/min. 

Contents of retinal DA, DOPAC, and HVA were quanti- 
fied by comparing peak heights obtained from injections of 
retinal homogenates to those obtained from injection of 
known quantities of standard solutions. Injection volumes for 
standards and retinas remained constant at 80 ~1. 

Data Analysis 

All data were analyzed by two-way analysis of variance for 
nonrepeated measures. Data were further analyzed by posthoc 
Tukey a-tests to determine differences between all means, and 

by Dunnett’s tests within each adaptation group to determine 
differences from control data (61). 

Results are expressed as retinal concentrations of DA, 
DOPAC, and HVA in nanograms per milligram wet weight, 
as well as the ratio of metabolites (DOPAC, HVA) to amine 
(DA). It has been suggested that the use of metabolite-trans- 
mitter ratios provides a simple, reliable, and noninvasive mea- 
sure of neurotransmitter use (1,35,56) 

RESULTS 

As illustrated in Figs. l-5, the effects of apomorphine are 
both dose- and condition-dependent. 

Light Adaptation 

The lowest dose of the drug, 0.01 mg/kg, significantly de- 
creased retinal concentrations of DA (Fig. 1) and its main 
metabolites, DOPAC (Fig. 2) and HVA (Fig. 3), in light- 
adapted rabbits. The metabolite-to-amine ratios (Figs. 4 and 
5) were also significantly reduced by this dose. In contrast, the 
largest dose of apomorphine studied, 1.0 mg/kg, produced 
a marked increase in HVA levels, as well as the ratio, 
HVA-DA, under these conditions. Although both dopamine 
and DOPAC concentrations remained constant, the ratio 
DOPAC-DA was significantly elevated. The intermediate 
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FIG. 3. Dose effects of 0.01, 0.1, and 1.0 mg/kg apomorphine vs. saline-treated controls on 
retinal HVA concentrations measured in both light- (left panel) and dark- (right panel) adapted 
rabbits. Results are expressed as mean k SD in nanograms per milligrams wet weight. Signifi- 
cant differences from respective saline-treated controls are indicated by asterisks. *p < 0.05. 
**p < 0.01. bStatistical significance not assessed (n = 4). 

dose, 0.1 mg/kg, of the agonist did not significantly alter any 
neurochemical measures. 

Dark Adaptation 

As seen in Fig. 1, DA levels were significantly reduced in 
retinas of dark-adapted, saline-treated animals compared with 
retinas of animals maintained in the light. Although both 
DOPAC and HVA levels were lower in dark-adapted animals, 
this tendency did not reach statistical significance (Figs. 2 and 
3). The lowest dose of apomorphine did not significantly af- 
fect any measure under dark-adaptation conditions. However, 
1.0 mg/kg of the agonist produced significant decreases in 
both DA and DOPAC levels, as well as the ratio of DOPAC 
to DA (Fig. 4). The statistical significance of the apparent 
decrease in HVA was not assessed, as the retinal levels of this 
metabolite in two animals were below the detection Iimits of 
the apparatus. Again, the intermediate dose of apomorphine 
produced no neurochemical changes. 

DISCUSSION 

Electrophysiologic, neurochemical, and behavioral effects 
of apomorphine in the central nervous system are diverse and 
highly dose-dependent. Comparison of results obtained in var- 

ious laboratories is virtually impossible because of the variety 
of techniques used, including in vitro vs. in vivo measure- 
ments, species differences, time course of effects, and regions 
studied. The data presented here provide ex vivo evidence for 
the existence of retinal pre- and postsynaptic receptors capable 
of regulating dopaminergic transmission. A low (0.01 mg/kg) 
dose of systemicahy administered apomorphine significantly 
attenuated dopamine metabolism in light-adapted retinas. 
Similar dose-related effects have been reported in striatal tis- 
sue, both in vivo and in vitro (32,62). Furthermore, results of 
a recent study indicated that the purported D, selective dopa- 
mine agonist, quinpirole, significantly decreased both dopa- 
mine and DOPAC levels in light-adapted rat retinas (23). 
These results have been interpreted as evidence for the pres- 
ence of presynaptic autoreceptors that, when stimulated, in- 
hibit the synthesis of dopamine. Although this inhibitory ef- 
fect is generally attributed to presynaptic receptor occupancy, 
it cannot be ruled out that certain presynaptic agonists, includ- 
ing apomorphine, exert a direct inhibitory action on tyrosine 
hydroxylase (TH) by competing for the pterine cofactor 
(6,18,21,25,45). In the present study, the effects the lowest 
dose (0.01 mg/kg) of the drug in dark-adapted retinas might 
provide indirect support of this possibility. It is known that in 
the dark, TH affinity for its co-factors and its activity are 
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greatly reduced (28). Thus, it might be argued that the lack of 
effect of 0.01 mg/kg on dopamine metabolism in the dark 
occurs because apomorphine cannot exacerbate the already- 
diminished interaction of TH with its co-factor. However, on 
a functional level, the results of our previous electrophysio- 
logic study indicated that this dose of the drug significantly 
increased the b-wave amplitude of the dark-adapted rabbit 
ERG, a finding consistent with decreased dopaminergic trans- 
mission. This might be a consequence of a postsynaptic action 
of this small dose of apomorphine, as recent reports have 
shown that intraperitoneal administration of similar doses of 
apomorphine (20-100 pg) increases a retinal CAMP-regulated 
protein kinase inhibitor, thus diminishing the physiologic ef- 
fectiveness of the transmitter (42,43). 

phine, in the dark-adapted rabbit retina, probably as a result 
of receptor supersensitivity generated by the lack of light (43). 
Also, in the dark, contrary to the effects of low doses, high 
doses of apomorphine (I-10 mg/kg) reduce the activity of a 
retinal CAMP regulated protein kinase inhibitor (42,43). 
Taken together, these findings indicate that high doses of apo- 
morphine further enhance the inhibitory effect of darkness on 
retinal dopamine synthesis and release. The increased postsyn- 
aptic stimulation produced by the drug is concordant with our 
electrophysiologic findings of significantly decreased ERG b- 
wave amplitudes in dark-adapted animals. 

The inhibitory effect of the higher dose of apomorphine, 
1 .O mg/kg, on dopamine metabolism in dark-adapted retinas 
is consistent with behavioral findings and neurochemical data 
generated from other central nervous system regions. From 
these studies it has been proposed that higher doses of this 
mixed agonist interact directly with postsynaptic receptors, 
activating a still-unknown negative feedback loop affecting 
dopamine synthesis (32,60,62). It has been shown that CAMP 
is more readily stimulated by DA agonists, including apomor- 

The neurochemical effects of 1.0 mg/kg apomorphine on 
light-adapted retinas were unexpected. Although levels of DA 
and DOPAC were not significantly altered, the concentration 
of HVA nearly doubled. Furthermore, the ratios of both 
DOPAC and HVA to dopamine were also increased, suggest- 

ing that the turnover of dopamine is significantly enhanced by 
this dose of apomorphine (Figs. 4 and 5). These findings are 
in contrast to the report of diminished dopamine metabolism 
in rat retina after the administration of high doses (10 mg/kg) 
of apomorphine under similar conditions (7). In this regard, 
electrophysiologic and biochemical data generated from in 
vitro retinal preparations have demonstrated that apomor- 
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FIG. 4. Dose effects of 0.01, 0.1, and 1.0 mg/kg apomorphine vs. saline-treated controls 
on the ratio of DOPAC to dopamine in retina calculated for both light- (left panel) and 
dark- (right panel) adapted rabbits. Significant differences from saline treated controls are 
indicated by asterisks. *p < 0.05. **p < 0.01. 
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FIG. 5. Dose effects of 0.01, 0.1, and 1 .O mg/kg apomorphine vs. saline-treated controls on 
the ratio of HVA to dopamine in retina calculated for both light- (left panel) and dark- (right 
panel) adapted rabbits. Significant differences from saline-treated controls are indicated by 
asterisks. *p < 0.05. **p < 0.01. bstatistical significance not assessed (n = 4). 

phine can act as an antagonist of dopamine at the D, postsyn- crine cells continue to function normally in response to the 
aptic receptor (20,30,31,37). If the same holds true for in vivo physiologic stimulus, light. It is thus possible that light is so 
apomorphine activity, then this could explain the increased potent a dopamine releaser, it overrides an hypothesized in- 
turnover of dopamine reported in this study, as it has been hibitory feedback loop thought to be responsible for the de- 
shown repeatedly that acute blockade of postsynaptic recep- crease in dopamine metabolism after the administration of 
tors results in increased synthesis and release of neurotrans- relatively large doses of apomorphine in other CNS regions. 
mitter (19,36,38). However, the antagonistic effect of apo- In this regard, data have been presented suggesting that TH 
morphine demonstrated in these studies was minimal, and activity in the retina is modulated by two independent mecha- 
occurred only at doses of the drug markedly higher than that nisms, one of which is light-dependent (8,9). Furthermore, a 
used in the present study. Also, as our results demonstrate, 2.0 mg/kg dose of the drug did not attenuate TH activity in 
this dose of the drug behaves as a postsynaptic receptor ago- light-adapted retinas (10). Nonetheless, this argument does 
nist in the absence of light stimulation. An alternative expla- not explain why the concentrations of metabolites increased 
nation for the increased metabolism of dopamine under these rather than remained steady, as would be expected if only the 
conditions resides in the morphology of the dopamine- synthesis of dopamine were affected. However, results of an 
containing amacrine cells. It has been shown that, whereas earlier in vitro study demonstrated that a purportedly selective 
inhibition of impulse flow as well as apomorphine retarded autoreceptor agonist, 3-PPP, which significantly reduced do- 
the disappearance of DA in the striatum of a-methyl- para- pamine synthesis, also induced dopamine release at high doses 
tyrosine-treated animals, neither treatment influenced DA re- (45). In the present study, although the metabolites and their 
lease and metabolism in the substantia nigra (39). These find- ratios to dopamine were elevated, the concentration of dopa- 
ings suggest that in the brain, cell body metabolism functions mine was indeed 20% lower in animals treated with the highest 
independently of both impulse flow and postsynaptic receptor dose of the drug (Fig. l), again suggesting that synthesis pro- 
events. In retina, the amacrine cells constitute the site of both ceeded at a slower rate than release. Together, these findings 
synthesis and release of dopamine, and might react to postsyn- indicate that the control of dopamine metabolism in the retina 
aptic receptor blockade and activation in a manner similar to is more complex than in other CNS regions. Obviously, fur- 
the substantia nigra. As such, even if apomorphine is acting ther work with selective agonists and antagonists is necessary 
as a DA agonist on postsynaptic retinal receptors, the ama- to define the relative contributions of light- and receptor- 
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mediated events in the regulation of dopamine synthesis and 
release. 

Finally, the lack of effect of the intermediate (0.1 mg/kg) 
dose of the drug probably reflects apomorphine’s composite 
nature, whereby the drug is simultaneously activating pre- and 
postsynaptic receptors, resulting in no net change in transmit- 
ter level. Similar effects of concomitant D/D, on CAMP accu- 
mulation have been reported (41,59). 

In conclusion, the results of this study provide ex vivo 
neurochemical evidence for the existence of both postsynaptic 
and presynaptic dopamine receptors. The decreased concen- 
trations of dopamine and its metabolites produced by the ad- 
ministration of 0.01 mg/kg apomorphine to light-adapted ani- 
mals are consistent with the hypothesis that low doses of 
apomorphine preferentially stimulate inhibitory dopaminergic 
autoreceptors, indicating that retinal dopamine containing 
amacrine cells function similar to dopamine neurons in other 
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regions of the CNS. The inhibitory effect of 0.01 mg/kg apo- 
morphine was not obtained in dark-adapted animals, proba- 
bly because of the already significantly lower basal levels of 
dopamine, as well as the deactivation of tyrosine hydroxylase 
under these conditions. The effects of the higher dose of the 
drug, (1 .O mg/kg) are more difficult to explain, but might be 
due to an antagonistic effect of apomorphine on postsynaptic 
retinal receptors. More likely, any agonistic effects of this 
dose of apomorphine at postsynaptic sites are masked by the 
amacrine cell’s sustained response to light, because the ex- 
pected effects of 1.0 mg/kg apomorphine are evident in dark- 
adapted retinas. 
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